Quad4R - Quadrilateral element with reduced integration (pyfe3d.quad4r
)#
The Quad4R
has full reduced integration, is very efficient, but
has an hourglass control to compensate the reduced integration that is not
robust and creates significant artificial stiffness. Therefore, the recommended
quadrilateral plane stress elements is the pyfe3d.quad4
.
The Quad4R
element has 6 degrees-of-freedom (DOF): \(u\), \(v\), \(w\),
\(r_x\), \(r_y\), \(r_z\). All DOF are interpolated bi-linearly between the nodes,
such that any of the DOF gradients can be constant over the element when the
element is rectangular.
- class pyfe3d.quad4r.Quad4R#
Nodal connectivity for the plate element similar to Nastran’s CQUAD4:
^ y | 4 ________ 3 | | | | --> x | | |_______| 1 2
The element coordinate system is determined identically what is explained in Nastran’s quick reference guide for the CQUAD4 element, as illustrated below.
- Attributes:
- eid,int
Element identification number.
- pid,int
Property identification number.
- area,double
Element area.
- K6ROT,double
Element drilling stiffness, added only to the diagonal of the local stiffness matrix. The default value is according to AUTODESK NASTRAN’s quick reference guide is
K6ROT = 100.
for static analysis. For modal solutions, this value should beK6ROT=1.e4
. MSC NASTRAN’s quick reference guide states thatK6ROT > 100.
should not be used, but this is controversial, already being controversial to what AUTODESK NASTRAN’s manual says.- r11, r12, r13, r21, r22, r23, r31, r32, r33double
Rotation matrix from local to global coordinates.
- m11, m12, m21, m22double
Rotation matrix only for the constitutive relations. Used when a material direction is used instead of the element local coordinates.
- c1, c2, c3, c4int
Position of each node in the global stiffness matrix.
- n1, n2, n3, n4int
Node identification number.
- init_k_KC0, init_k_KG, init_k_Mint
Position in the arrays storing the sparse data for the structural matrices.
- init_k_KA_beta, init_k_KA_gamma, init_k_CAint
Position in the arrays storing the sparse data for the aerodynamic matrices based on the Piston theory.
- probe,
Quad4RProbe
object Pointer to the probe.
Methods
update_CA
(self, long[, long[, double[)Update sparse vectors for piston-theory aerodynamic damping matrix \(CA\)
update_KA_beta
(self, long[, long[, double[)Update sparse vectors for piston-theory aerodynamic matrix \(KA_{\beta}\)
update_KA_gamma
(self, long[, long[, double[)Update sparse vectors for piston-theory aerodynamic matrix \(KA_{\gamma}\)
update_KC0
(self, long[, long[, double[, ...)Update sparse vectors for linear constitutive stiffness matrix KC0
update_KG
(self, long[, long[, double[, ...)Update sparse vectors for geometric stiffness matrix KG
update_KG_given_stress
(self, double Nxx, ...)Update sparse vectors for geometric stiffness matrix KG
update_M
(self, long[, long[, double[, ...)Update sparse vectors for mass matrix M
update_area
(self)Update element area
update_probe_ue
(self, double[)Update the local displacement vector of the probe of the element
update_probe_xe
(self, double[)Update the 3D coordinates of the probe of the element
update_rotation_matrix
(self, double[, ...)Update the rotation matrix of the element
- K6ROT#
K6ROT: ‘double’
- area#
area: ‘double’
- c1#
c1: ‘int’
- c2#
c2: ‘int’
- c3#
c3: ‘int’
- c4#
c4: ‘int’
- eid#
eid: ‘int’
- init_k_CA#
init_k_CA: ‘int’
- init_k_KA_beta#
init_k_KA_beta: ‘int’
- init_k_KA_gamma#
init_k_KA_gamma: ‘int’
- init_k_KC0#
init_k_KC0: ‘int’
- init_k_KG#
init_k_KG: ‘int’
- init_k_M#
init_k_M: ‘int’
- m11#
m11: ‘double’
- m12#
m12: ‘double’
- m21#
m21: ‘double’
- m22#
m22: ‘double’
- n1#
n1: ‘int’
- n2#
n2: ‘int’
- n3#
n3: ‘int’
- n4#
n4: ‘int’
- pid#
pid: ‘int’
- probe#
probe: pyfe3d.quad4r.Quad4RProbe
- r11#
r11: ‘double’
- r12#
r12: ‘double’
- r13#
r13: ‘double’
- r21#
r21: ‘double’
- r22#
r22: ‘double’
- r23#
r23: ‘double’
- r31#
r31: ‘double’
- r32#
r32: ‘double’
- r33#
r33: ‘double’
- update_CA(self, long[::1] CAr, long[::1] CAc, double[::1] CAv) void #
Update sparse vectors for piston-theory aerodynamic damping matrix \(CA\)
- Parameters:
- CArnp.array
Array to store row positions of sparse values
- CAcnp.array
Array to store column positions of sparse values
- CAvnp.array
Array to store sparse values
- update_KA_beta(self, long[::1] KA_betar, long[::1] KA_betac, double[::1] KA_betav) void #
Update sparse vectors for piston-theory aerodynamic matrix \(KA_{\beta}\)
- Parameters:
- KA_betarnp.array
Array to store row positions of sparse values
- KA_betacnp.array
Array to store column positions of sparse values
- KA_betavnp.array
Array to store sparse values
- update_KA_gamma(self, long[::1] KA_gammar, long[::1] KA_gammac, double[::1] KA_gammav) void #
Update sparse vectors for piston-theory aerodynamic matrix \(KA_{\gamma}\)
- Parameters:
- KA_gammarnp.array
Array to store row positions of sparse values
- KA_gammacnp.array
Array to store column positions of sparse values
- KA_gammavnp.array
Array to store sparse values
- update_KC0(self, long[::1] KC0r, long[::1] KC0c, double[::1] KC0v, ShellProp prop, int update_KC0v_only=0, double hgfactor_u=1., double hgfactor_v=1., double hgfactor_w=1., double hgfactor_rx=1., double hgfactor_ry=1.) void #
Update sparse vectors for linear constitutive stiffness matrix KC0
Reduced integration is used with a single point in the centroid (\(\xi=\eta=0\)) and weight \(w_{ij}=4\), preventing shear locking. Hourglass control is used according to Brockman 1987:
Brockman, R. A., 1987, “Dynamics of the Bilinear Mindlin Plate Element,” Int. J. Numer. Methods Eng., 24(12), pp. 2343–2356. https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.1620241208
Drilling stiffness is used according to Adam et al. 2013:
Adam, F. M., Mohamed, A. E., and Hassaballa, A. E., 2013, “Degenerated Four Nodes Shell Element with Drilling Degree of Freedom,” IOSR J. Eng., 3(8), pp. 10–20.
- Parameters:
- KC0rnp.array
Array to store row positions of sparse values
- KC0cnp.array
Array to store column positions of sparse values
- KC0vnp.array
Array to store sparse values
- prop
ShellProp
object Shell property object from where the stiffness and mass attributes are read from.
- update_KC0v_onlyint
The default
0
means that the row and column indicesKC0r
andKC0c
should also be updated. Any other value will only update the stiffness matrix valuesKC0v
.- hgfactor_u, hgfactor_v, hgfactor_w, hgfactor_rx, hgfactor_rydouble
These offer the possibility to change the default hourglass stiffnesses for each degree-of-freedom. The default value of these multipliers is 0.1.
- update_KG(self, long[::1] KGr, long[::1] KGc, double[::1] KGv, ShellProp prop, int update_KGv_only=0) void #
Update sparse vectors for geometric stiffness matrix KG
Two-point Gauss-Legendre quadrature is used, which showed more accuracy for linear buckling load predictions.
Before this function is called, the probe
Quad4RProbe
attribute of theQuad4R
object must be updated usingupdate_probe_ue()
with the correct pre-buckling displacements; andupdate_probe_xe()
with the node coordinates.- Parameters:
- KGrnp.array
Array to store row positions of sparse values
- KGcnp.array
Array to store column positions of sparse values
- KGvnp.array
Array to store sparse values
- prop
ShellProp
object Shell property object from where the stiffness and mass attributes are read from.
- update_KGv_onlyint
The default \(0\) means that only \(KGv\) is updated. Any other value will lead to \(KGr\) and \(KGc\) also being updated.
- update_KG_given_stress(self, double Nxx, double Nyy, double Nxy, long[::1] KGr, long[::1] KGc, double[::1] KGv, int update_KGv_only=0) void #
Update sparse vectors for geometric stiffness matrix KG
Note
A constant stress state is assumed within the element, according to the given values of \(N_{xx}, N_{yy}, N_{xy}\).
Two-point Gauss-Legendre quadrature is used, which showed more accuracy for linear buckling load predictions.
Before this function is called, the probe
Quad4RProbe
attribute of theQuad4R
object must be updated usingupdate_probe_xe()
with the node coordinates.- Parameters:
- KGrnp.array
Array to store row positions of sparse values
- KGcnp.array
Array to store column positions of sparse values
- KGvnp.array
Array to store sparse values
- update_KGv_onlyint
The default \(0\) means that only \(KGv\) is updated. Any other value will lead to \(KGr\) and \(KGc\) also being updated.
- update_M(self, long[::1] Mr, long[::1] Mc, double[::1] Mv, ShellProp prop, int mtype=0) void #
Update sparse vectors for mass matrix M
Different integration schemes are available by means of the
mtype
parameter.- Parameters:
- Mrnp.array
Array to store row positions of sparse values
- Mcnp.array
Array to store column positions of sparse values
- Mvnp.array
Array to store sparse values
- mtypeint, optional
0 for consistent mass matrix using method from Brockman 1987 1 for reduced integration mass matrix using method from Brockman 1987 2 for lumped mass matrix using method from Brockman 1987
- update_area(self) void #
Update element area
- update_probe_ue(self, double[::1] u) void #
Update the local displacement vector of the probe of the element
Note
The
probe
attribute objectQuad4RProbe
is updated, not the element object.- Parameters:
- uarray-like
Array with global displacements, for a total of \(M\) nodes in the model, this array will be arranged as: \(u_1, v_1, w_1, {r_x}_1, {r_y}_1, {r_z}_1, u_2, v_2, w_2, {r_x}_2, {r_y}_2, {r_z}_2, ..., u_M, v_M, w_M, {r_x}_M, {r_y}_M, {r_z}_M\).
- update_probe_xe(self, double[::1] x) void #
Update the 3D coordinates of the probe of the element
Note
The
probe
attribute objectQuad4RProbe
is updated, not the element object.- Parameters:
- xarray-like
Array with global nodal coordinates, for a total of \(M\) nodes in the model, this array will be arranged as: \(x_1, y_1, z_1, x_2, y_2, z_2, ..., x_M, y_M, z_M\).
- update_rotation_matrix(self, double[::1] x, double xmati=0., double xmatj=0., double xmatk=0.) void #
Update the rotation matrix of the element
Attributes
r11,r12,r13,r21,r22,r23,r31,r32,r33
are updated, corresponding to the rotation matrix from local to global coordinates.The element coordinate system is determined, identifying the \(ijk\) components of each axis: \({x_e}_i, {x_e}_j, {x_e}_k\); \({y_e}_i, {y_e}_j, {y_e}_k\); \({z_e}_i, {z_e}_j, {z_e}_k\).
- Parameters:
- xarray-like
Array with global nodal coordinates, for a total of \(M\) nodes in the model, this array will be arranged as: \(x_1, y_1, z_1, x_2, y_2, z_2, ..., x_M, y_M, z_M\).
- xmati, xmatj, xmatk: array-like
Vector in global coordinates representing the material direction. This vector is projected onto the plate element, thus becoming the material direction. The \(ABD\) matrix defining the constitutive behavior of the element is rotated from the material direction to the element \(x\) axis while calculating the stiffness matrices.
- class pyfe3d.quad4r.Quad4RData#
Used to allocate memory for the sparse matrices.
- Attributes:
- KC0_SPARSE_SIZE,int
KC0_SPARSE_SIZE = 576
- KG_SPARSE_SIZE,int
KG_SPARSE_SIZE = 144
- M_SPARSE_SIZE,int
M_SPARSE_SIZE = 480
- KA_BETA_SPARSE_SIZE,int
KA_BETA_SPARSE_SIZE = 144
- KA_GAMMA_SPARSE_SIZE,int
KA_GAMMA_SPARSE_SIZE = 144
- CA_SPARSE_SIZE,int
CA_SPARSE_SIZE = 144
- CA_SPARSE_SIZE#
CA_SPARSE_SIZE: ‘int’
- KA_BETA_SPARSE_SIZE#
KA_BETA_SPARSE_SIZE: ‘int’
- KA_GAMMA_SPARSE_SIZE#
KA_GAMMA_SPARSE_SIZE: ‘int’
- KC0_SPARSE_SIZE#
KC0_SPARSE_SIZE: ‘int’
- KG_SPARSE_SIZE#
KG_SPARSE_SIZE: ‘int’
- M_SPARSE_SIZE#
M_SPARSE_SIZE: ‘int’
- class pyfe3d.quad4r.Quad4RProbe#
Probe used for local coordinates, local displacements, local stiffness, local stresses etc…
The idea behind using a probe is to avoid allocating larger memory buffers per finite element. The memory buffers are allocated per probe, and one probe can be shared amongst many finite elements, with the information being updated and retrieved on demand.
- Attributes:
- xe,array-like
Array of size
NUM_NODES*DOF//2=12
containing the nodal coordinates in the element coordinate system, in the following order \({x_e}_1, {y_e}_1, {z_e}_1, `{x_e}_2, {y_e}_2, {z_e}_2\), \({x_e}_3, {y_e}_3, {z_e}_3\), \({x_e}_4, {y_e}_4, {z_e}_4\).- ue,array-like
Array of size
NUM_NODES*DOF=24
containing the element displacements in the following order \({u_e}_1, {v_e}_1, {w_e}_1, {{r_x}_e}_1, {{r_y}_e}_1, {{r_z}_e}_1\), \({u_e}_2, {v_e}_2, {w_e}_2, {{r_x}_e}_2, {{r_y}_e}_2, {{r_z}_e}_2\), \({u_e}_3, {v_e}_3, {w_e}_3, {{r_x}_e}_3, {{r_y}_e}_3, {{r_z}_e}_3\), \({u_e}_4, {v_e}_4, {w_e}_4, {{r_x}_e}_4, {{r_y}_e}_4, {{r_z}_e}_4\).
- ue#
ue: ‘double[::1]’
- xe#
xe: ‘double[::1]’