References#

[lucy1977]
    1. Lucy. “A numerical approach to the testing of the fission hypothesis”. The Astron. J. 1977: 1013-1024.

[monaghan1998]
    1. Monaghan. “An introduction to sph”. Comput. Phys. Comm. 1998, 48:89-96.

[libersky1990]
    1. Libersky, A. G. Petschek. “Smooth particle hydrodynamics with strength of materials”. Advances in the Free Lagrange Method, Lecture Notes in Physics 1990; :395.

[randles1996]
    1. Randles, L. D. Libersky. “Smoothed particle hydrodynamics: some recent improvements and applications”. Computer Methods in Applied Mechanics and Engineering 1996; 139:375–408.

[swegle1995]
    1. Swegle, D. A. Hicks. “Smooth particle hydrodynamics stability analysis”. J. Comput. Phys. 1995; 116:123-134.

[johnson1996]
    1. Johnson, S. R. Beissel. “Normalized smoothing functions for SPH impact computations”. Int. J. Numer. Meth. Engng. 1996.

[dilts2000]
    1. Dilts. “Moving least squares particle hydrodynamics II: Conservation and boundaries”. Int. J. Numer. Meth. Engng. 2000; :1503-1524.

[nayroles1992]
  1. Nayroles, G. Touzot, P. Villon. “Generalizing the finite element method: diffuse approximation and diffuse elements”. Comput. Mech. 1992; 10:307–318.

[belytschko1994]
  1. Belytschko, Y. Y. Lu, L. Gu. “Element free Galerkin methods”. Int. J. Numer. Meth. Engng. 1994; 37:229-256.

[lu1994]
    1. Lu, T. Belytschko, L. Gu. “A new implementation of the element free Galerkin methods”. Comput. Methods Appl. Mech. Engng 1994; 113:397-414.

[belytschko1994_2]
  1. Belytschko, L. Gu, Y. Y. Lu. “Fracture and crack growth by element free Galerkin methods”. Modeling Simul. Mater. Sci. Engng. 1994; 115:277-286.

[belytschko1996]
  1. Belytschko, Y. Krongauz, D. Organ, M. Fleming, P. Krysl. “Meshless methods: An overview and recent developments”. Comput. Methods Appl. Mech. Engrg. 1996; 139:3-47.

[liu2003]
    1. Liu. “Mesh free methods: moving beyond the finite element method”. CRC Press LLC, 2003.

[liu1993]
    1. Liu, J. Adee, S. Jun. “Reproducing kernel particle methods for elastic and plastic problems”. Advanced Computational Methods for Material Modeling, vol. AMD 180 and PVP 268. ASME: New York, 1993; 175-190.

[liu1995]
    1. Liu, S. Jun, S. Li, J. Adee, T. Belytschko. “Reproducing kernel particle methods for structural dynamics”. International Journal for Numerical Methods in Engineering 1995; 38:1655-1679.

[liu1995_2]
    1. Liu, S. Jun, Y. Zhang. “Reproducing kernel particle methods”. International Journal for Numerical Methods in Fluids 1995; 20:1081-1106.

[jun1998]
  1. Jun, W. K. Liu, T. Belytschko. “Explicit reproducing kernel particle methods for large deformation problems”. International Journal for Numerical Methods in Engineering 1998; 41:137-166.

[atluri1998]
    1. Atluri, T. Zhu. “A new meshless local Petrov-Galerkin (MLPG) method”. Computer Modeling in Engineering and Sciences 1998; 22:117-127.

[harlow1963]
  1. Harlow. “The particle-in-cell computing method for fluid dynamics”. Methods Comput. Phys. 1963; 3:319-343.

[brackbill1986]
  1. Brackbill, H. Ruppel. “Flip: A low-dissipation, particle-in-cell method for fluid flows in two dimensions”. J. Comp. Phys. 1986; 65:314-343.

[sulsky1994]
  1. Sulsky, Z. Chen, H. Schreyer. “A particle method for history dependent materials”. Computer Methods in Applied Mechanics and Engineering 1994; 118:179-196.

[sulsky1995]
  1. Sulsky, S. Zhou, H. Schreyer. “Application of a particle-in-cell method to solid mechanics”. Computer Physics Communications 1995; 87:236-252.

[sulsky1996]
  1. Sulsky, H. Schreyer. “Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems”. Computer Methods in Applied Mechanics and Engineering 1996; 139:409-429.

[bardenhagen2004]
  1. Bardenhagen, E. Kober. “The generalized interpolation material point method”. Computer Modeling in Engineering and Sciences 2004; 5:477-495.