# Semi-analytical models for Stiffeners (compmech.stiffener)#

This module has all stiffener’s formulations used along other classes.

class compmech.stiffener.BladeStiff1D(bay, mu, panel1, panel2, ys, bb, bf, bstack, bplyts, blaminaprops, fstack, fplyts, flaminaprops)[source]#

Blade Stiffener using 1D Formulation for Flange

Blade-type of stiffener model using a 1D formulation for the flange and a 2D formulation for the padup (base):

           || --> flange       |
||                  |-> stiffener
=========================  --> panels
Panel1      Panel2


Both the flange and the padup are optional, but one must exist.

Each stiffener has a constant $$y$$ coordinate.

Methods

 calc_k0([size, row0, col0, silent, finalize]) Calculate the linear constitutive stiffness matrix calc_kG0([size, row0, col0, silent, finalize, c]) Calculate the linear geometric stiffness matrix calc_kM([size, row0, col0, silent, finalize]) Calculate the mass matrix
calc_k0(size=None, row0=0, col0=0, silent=False, finalize=True)[source]#

Calculate the linear constitutive stiffness matrix

calc_kG0(size=None, row0=0, col0=0, silent=False, finalize=True, c=None)[source]#

Calculate the linear geometric stiffness matrix

calc_kM(size=None, row0=0, col0=0, silent=False, finalize=True)[source]#

Calculate the mass matrix

class compmech.stiffener.BladeStiff2D(bay, mu, panel1, panel2, ys, bb, bf, bstack, bplyts, blaminaprops, fstack, fplyts, flaminaprops, mf=14, nf=11)[source]#

Blade Stiffener using 2D Formulation for Flange

Blade-type of stiffener model using a 2D formulation for the flange and a 2D formulation for the base (padup):

           || --> flange       |
||                  |-> stiffener
=========================  --> panels
Panel1      Panel2


Both the flange and the base are optional. The stiffener’s base is modeled using the same approximation functions as the skin, with the proper offset.

Each stiffener has a constant $$y_s$$ coordinate.

Methods

 calc_k0([size, row0, col0, silent, finalize]) Calculate the linear constitutive stiffness matrix calc_kG0([size, row0, col0, silent, ...]) Calculate the linear geometric stiffness matrix calc_kM([size, row0, col0, silent, finalize]) Calculate the mass matrix
calc_k0(size=None, row0=0, col0=0, silent=False, finalize=True)[source]#

Calculate the linear constitutive stiffness matrix

calc_kG0(size=None, row0=0, col0=0, silent=False, finalize=True, c=None, NLgeom=False)[source]#

Calculate the linear geometric stiffness matrix

calc_kM(size=None, row0=0, col0=0, silent=False, finalize=True)[source]#

Calculate the mass matrix

class compmech.stiffener.TStiff2D(bay, mu, panel1, panel2, ys, bb, bf, bstack, bplyts, blaminaprops, fstack, fplyts, flaminaprops, model='tstiff2d_clt_donnell_bardell', mb=15, nb=12, mf=15, nf=12)[source]#

T Stiffener using 2D Formulation for the Base and Flange

T-type of stiffener model using a 2D formulation for the flange and a 2D formulation for the base:

           || --> flange       |
||                  |-> stiffener
======  --> base      |
=========================  --> panels
Panel1      Panel2


The difference between this model and :class:’.BladeStiff2D’ is that here the stiffener’s base has independent field variables allowing the simulation of skin-stiffener debounding effects.

Each stiffener has a constant $$y_s$$ coordinate.

Methods

 calc_k0([size, row0, col0, silent, finalize]) Calculate the linear constitutive stiffness matrix calc_kG0([size, row0, col0, silent, ...]) Calculate the linear geometric stiffness matrix calc_kM([size, row0, col0, silent, finalize]) Calculate the mass matrix
calc_k0(size=None, row0=0, col0=0, silent=False, finalize=True)[source]#

Calculate the linear constitutive stiffness matrix

calc_kG0(size=None, row0=0, col0=0, silent=False, finalize=True, c=None, NLgeom=False)[source]#

Calculate the linear geometric stiffness matrix

See Panel.calc_k0() for details on each parameter.

calc_kM(size=None, row0=0, col0=0, silent=False, finalize=True)[source]#

Calculate the mass matrix